有人可能会问什么是CCUS?带大家了解一下
碳捕集、利用与封存简称CCUS。作为应对全球气候变化、控制温室气体排放的重要技术手段,CCUS通过把生产过程中排放的二氧化碳进行捕集提纯,继而投入新的生产过程进行再利用和封存。
碳减排不仅关乎国家政策的规划承诺,更与我们赖以生存的地球环境息息相关。早在20世纪70年代,国外就已经开始对碳捕集进行相关研究。IPCC(Intergovernmental Panel on Climate Change,联合国政府间气候变化专门委员会) 关于全球变暖1.5℃的特别报告指出,CCUS ( Carbon CaptureUtilization and Storage,二氧化碳捕集封存)技术可有效改善全球气候的变化,并且明确指出CCUS 技术对于实现2050年碳零排放意义重大。2019年,二十国集团 ( G20) 能源与环境部长级会议首次将CCUS 技术纳入议题。
国外科研工作者对碳捕集已经开展大量的研究,Lee等通过固体吸收剂捕获二氧化碳(CO2),以减少来自不同燃烧过程源的 CO2排放,所用的吸附剂通过加热或减压的方式回收利用,作为捕获CO2成熟的技术,分离效率可达到90%。Dutcher等通过胺基技术捕集 CO2,由于反应的高度可逆性,可有效应用于工程项目。
我国对 CCUS 技术的研究起步较晚,自2006年开始才陆续出台关于 CCUS 技术的政策。“十一五”期间每年平均出台3项政策,“十二五”期间平均每年出台 3 ~ 4 项政策。《中国应对气候变化国家方案》《中国应对气候变化科技专项行动》《中国应对气候变化的政策与行动》白皮书等都将CCUS技术作为重点研究的技术之一。《“十三五” 控制温室气体排放工作方案》提出,到2020年单位国内生产总值 CO2排放比 2015 年下降 18%,碳排放总量得到有效控制。2015 年,巴黎气候大会上,中国承诺将于2030年左右使CO2排放达到峰值并争取尽早实现,2030 年单位国内生产总值CO2排放比2005年下降60% ~ 65%,非化石能源占一次能源消费比重达到 20%左右。
现代工业生产中 CO2的排放源很多,如水泥、钢铁、电力、 煤化工及炼化厂等都是 CO2排放大户。针对CO2排放问题,各个行业均进行了CO2的捕集、利用和封存方面的研究探索,每个行业又根据自身行业特点,形成了多种CO2捕集、利用和封存的技术方法。
CCUS技术概述
1.1 碳捕集技术
CO2捕集的方法按照对燃料、氧化剂和燃烧产物采用的措施,可以分为燃烧前捕集、纯氧燃烧和燃烧后捕集3种,如图1所示。
富氧燃烧技术采用纯氧或者富氧将化石燃料进行燃烧,燃烧后的主要产物为CO2、水和一些惰性组分。水蒸气冷凝后,通过低温闪蒸提纯CO2,提纯后的CO2浓度可达80%~98 vol%,提高了CO2捕集率。
2. 碳利用和封存技术
CCUS—EOR(Enhanced oil recovery,强化采油)技术可以通过CO2把煤化工或天然气化工产生的碳源和油田联系起来,有较好的收益,如图3所示,该技术通过把捕集来的CO2注入到油田中,使即将枯竭的油田再次采出石油的同时,也将CO2永久地贮存在地下。CO2驱油的主要原理是降低原油粘度、增加原油内能,从而提高原油流动性并增加油层压力。CO2制化肥和食品级CO2商业利用也是目前较成熟的碳利用项目。
国外近年来碳利用有很多新兴的利用方向,如荷兰和日本均有较大规模的将工业产生的CO2送到园林,作为温室气体来强化植物生长的项目。包括温室气体利用技术在内,国外处于示范项目阶段碳利用技术有CO2制化肥、油田驱油、食品级应用等;正处于发展阶段的有CO2制聚合物、CO2甲烷化重整、CO2加氢制甲醇、海藻培育、动力循环等;尚处于理论研究阶段的方向有CO2制碳纤维和乙酸等。
国内新兴的碳利用方向主要有CO2加氢制甲醇、CO2加氢制异构烷烃、CO2加氢制芳烃、CO2甲烷化重整等,如山西煤化所、大连化物所、中科院上海研究院、大连理工大学等,对这些技术进行了研究,但大多都处在催化剂研究的理论研究阶段或中试阶段。
2.2碳封存
CO2捕集后,可以通过泵送到地下、海底长期储存,或直接通过强化自然生物学作用把CO2储存在植物、土地和地下沉积物中。当前的碳封存技术主要分为以下2种:
第一种是将CO2高压液化注入海洋底。基于CO2的理化性质,在海平面2.5km以下,CO2主要以液态的形式存在。由于密度大于海水密度,将这一区域作为海洋碳封存的安全区域,如图4(a)所示。
第二种是将CO2进行地质封存。在地下0.8~1.0km这一高度区域内,超临界状态的CO2具有流体性质。基于CO2的理化性质改变,可实现地质碳封存,如图4(b)所示。
图4碳封存示意图
CCUS项目主要进展
1. 国外CCUS项目进展
为应对全球气候变化,国外很早就展开了CO2捕集项目的相关研究。表1将国际大型CCS/CCUS项目做了总结。
国外最早报道的大型CCUS项目是1972年美国建成的Terrell项目,CO2捕集能力达40万~50万t/a;随后,美国俄克拉荷马州Enid项目于1982年建成,通过化肥厂产生的CO2进行油田驱油,CO2捕集能力达70万t/a。1/3国土面积在北极圈内的挪威,也是最先开展CO2捕集项目研究的国家之一,1996年,挪威Sleipner项目的建成是世界上首个将CO2注入到地下(盐水层)的项目,年封存CO2量近百万吨。
进入本世纪以来,由于工业化步伐的加快以及全球变暖趋势的加剧,CO2捕集项目受到越来越多国家的重视。美国、加拿大、澳大利亚、日本及阿联酋等国家加速推进CO2捕集项目的工业化。
2000年,美国与加拿大合作,在Weyburn油田注入Great Plain Sysfuels Plant和SaskPower电厂的CO2,提高濒临枯竭油田采油率的同时,累计封存CO2达2600多万t。
2014年,加拿大SaskPower公司的Boundary Dam Power项目成为全球第一个成功应用于发电厂CO2捕集项目。该项目将150MW燃煤发电机产生的CO2捕集后,一部分封存地下,一部分用于美国Weyburn油田驱油,CO2捕集能力达100万t/a。2019年全年,该项目捕集CO2达61.6万t。
2015年,加拿大Quest项目将合成原油制氢过程中产生的CO2成功注入咸水层封存,每年CO2捕集能力达100万t/a。该项目是油砂行业第一个CCS项目,每年减少碳排放可达100万t。截止到2019年,Quest项目已经累计捕集CO2达400万t,以更低的成本提前完成预定目标。目前,Quest项目是全球最大捕集CO2并成功注入到地下的项目。
2016年,澳大利亚西部的Gorgon项目是全球最大的单体LNG项目Gorgon天然气项目的配套,该项目通过液化技术将CO2从天然气中分离出来,将分离出来的CO2注入到巴罗岛的盐水层中,注入量可达350万t/a。
2.国内已建/在建的CCUS项目进展
随着工业化进程的加快,国内也开启了CO2捕集项目的研究。相比国外,中国的CCUS项目起步较晚,且尚无百万吨级规模的捕集项目。目前,国内以捕集量为10万t级规模的项目为主。国内CCS/CCUS项目如表2所示。
随后,基于日趋成熟的CO2捕集技术,中石化胜利油田、中国神华、延长石油及中石化中原油田加速推进CO2捕集项目的工业化。
2010年,中石化胜利油田建成了国内首个燃煤电厂的CCUS示范项目,以燃煤电厂烟气CO2为源头,采用燃烧-捕集技术,将捕集的CO2注入到油田中进行驱油,CO2捕集能力达3万~4万t/a;2011年,神华鄂尔多斯10万t/a的CCS示范项目落成,采用甲醇吸收法捕集煤气化制氢项目尾气中的CO2,后向盐水层中注入CO2,该项目是国内第一个盐水层地质封存实验项目;2012年,延长石油建成了5万t/a的CO2捕集利用项目,该项目利用煤化工产生的CO2,经过低温甲醇洗技术提纯加压液化后注入油田中,降低了原油粘度,提高了原油采收率并实现了CO2永久封存;2015年,中石化中原油田炼厂尾气CCUS项目建成,项目将已经接近废弃的油田,通过CO2驱油将油田采出率提高15%,目前已有百万吨CO2注入到地下。
除了传统CO2捕集技术,国内还开展了CO2新型再利用技术,应用于食品、精细化工等行业。
2009年,上海石洞口第二电厂碳捕集项目建成,捕集规模为10万t/a,捕集后的CO2主要用于食品行业;2011年,经连云港清洁煤能源动力系统研究,将IGCC产生的CO2捕集后一部分用于尿素和纯碱工业,一部分注入到盐水层进行封存;2012年,天津北塘国电集团CO2捕集示范项目采用燃烧后捕集技术,年捕集量为2万t,捕集后的CO2用于食品行业。
此外,微藻固碳技术世界范围内仍处于发展阶段,2010年,新奥集团在内蒙古达拉特旗利用微藻固碳技术,将煤制甲醇/二甲醚装置的尾气吸收后,一部分用作生物柴油,一部分用作生产饲料,处理量达2万t/a。
除已建项目,国内将加速建设CO2捕集项目,如齐鲁石化在建CCUS-EOR项目(2020年),CO2捕集能力4万t/a。在一些双边协议中,中美将在中国开展一些大型CCUS项目,如中美气候变化合作延长石油CCUS示范项目等。
结论与展望
工业是现代社会的基础,也是经济发展的源泉,在带来了经济效益和工作机会的同时,也带来了许多问题。工业消耗了全球1/3的能源,却产生了全球1/3的温室气体。在实现近零排放目标和实现全球温控1.5℃路线图的进程中,CCUS技术将起到至关重要的作用。IEA预估利用CCUS技术,从2017年到2060年可以减少280亿t的CO2排放。
下一代碳捕集技术将会在材料创新、工艺或设备的改进上取得突破,这些新进展将使得投资运营成本降低的同时提高捕集效率。如Ion Engineering公司的非水溶剂、MTR公司的膜分离体系、三菱重工的KS-21溶剂、Lind-BASF的贫富溶剂吸收再生循环技术等,都已经在FEED(Front and End Engineering Desing,前端工程设计)工程设计项目中进行了实践。随着工业的进步,下一代捕集技术将助推CCUS技术的进步和发展。
未来几十年,对于应对全球气候变暖,碳利用将起到重要作用。纵观国内外成熟的工程项目,地下封存、驱油和食品级利用是当前较主流的方向。其中,驱油技术可以通过CO2把煤化工或天然气化工产生的碳源和油田联系起来,有较好的收益,有较好的应用前景。而未来,与氢能利用相结合的CCUS项目将会越来越多。
目前全球98%的氢能来自不可再生化石能源,与CCUS技术相结合的气体重整(主要是甲烷蒸汽重整)和煤气化技术相结合可以实现生产低碳氢能的目标。欧盟和一些国家已经直接将CCUS作为一个关键方法来实现这一目标,美国、荷兰、日本、澳大利亚、新西兰以及中国也都在氢能政策中提到了CCUS的重要性。
案例
2021年7月5日,中国石化宣布:将开启我国首个百万吨级CCUS项目建设——齐鲁石化-胜利油田CCUS项目,涵盖碳捕集、利用和封存3个环节,建成后将成为国内最大CCUS全产业链示范基地,为国家推进CCUS规模化发展提供应用案例。这标志着我国CCUS项目建设取得重大进展,对该产业发展具有巨大示范效应,对有效提升我国碳减排能力、搭建“人工碳循环”模式具有重要意义,将有力推动国家2030年碳达峰、2060年碳中和目标实现。
发展CCUS对我国具有重要战略意义。可直接减少二氧化碳排放。按齐鲁石化-胜利油田百万吨级CCUS计算,可每年减排二氧化碳100万吨,相当于植树近900万棵、近60万辆经济型轿车停开一年。可有力保障国家能源安全。我国有较大石油地质储量适合二氧化碳驱油,加快CCUS产业发展将会对保障国家能源安全提供支撑。可推动化石能源行业低碳转型。CCUS作为碳中和必不可少的技术路径,减排潜力十分巨大,工业利用前景广阔。研究表明,我国未来有10亿多吨碳排放量要依靠CCUS来实现中和,可有力推进化石能源洁净化、洁净能源规模化、生产过程低碳化。
齐鲁石化-胜利油田百万吨级CCUS项目已完成80%。在碳捕集环节,齐鲁石化二氧化碳回收提纯装置包括压缩单元、制冷单元和液化精制单元,以及配套公用工程,回收煤制氢装置尾气中的二氧化碳,提纯后纯度达到99%以上;在碳利用与封存环节,胜利油田运用超临界二氧化碳易与原油混相的原理,计划在正理庄油田建设10座无人值守注气站,向附近73口井注入二氧化碳,同时油气集输系统全部采用密闭管输,进一步提高二氧化碳封存率,预计未来15年,可累计注入二氧化碳1068万吨,可实现增油296.5万吨。目前,项目前期准备工作全面启动,预计2021年底达到投产条件。
本文来源于综合信息。
版权声明:转载流程工业网内容,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:process.jgvogel.cn。
2024-12-17
2024-12-24
2025-01-08
2025-01-08
2025-01-07
2024-12-20
2025-01-10
工业是节能降碳的重点领域,也是实现“3060”碳达峰碳中和目标的关键。党的二十大报告明确提出,积极稳妥推进碳达峰碳中和,推进降碳、减污、扩绿、增长,完善能源消耗总量和强度调控,重点控制化石能源消费,逐步转向碳排放总量和强度“双控”制度。为了回顾 2023 年工业企业在节能降碳、绿色可持续发展方面的成就,了解当下的创新技术和应用,《流程工业》编辑部在 2024 年第一期特别策划了“工业碳中和”专题,邀请了一批国内外优秀的工业企业分享观点和产业实践,为广大的流程工业企业提供绿色可持续发展的启迪和借鉴。
作者:本刊编辑部
评论
加载更多