差压式流量计(以下简称DPF或流量计)是根据安装于管道中流量检测件产生的差压、已知的流体条件和检测件与管道的几何尺寸来测量流量的仪表。DPF由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。通常以检测件的型式对DPF分类,如孔扳流量计、文丘里管流量计及均速管流量计等。二次装置为各种机械、电子、机电一体式差压计,差压变送器和流量显示及计算仪表,它已发展为三化(系列化、通用化及标准化)程度很高的种类规格庞杂的一大类仪表。差压计既可用于测量流量参数,也可测量其他参数(如压力、物位、密度等)。
一、差压流量计的选用要点
DPF应用领域极其广泛,封闭管道各种测量对象都有应用:流体方面,单相、混相、洁净、脏污;工作状态方面,常压、高压、真空、常温、高温、低温;管径方面,从几毫米到几米;流动条件方面:亚音速流、临界流、脉动流。并且在上述各方面都有大量的理论和实践的资料可供参考。20世纪50年代以前在过程控制工程中几乎是惟一的流量计,后来各种类型流量计相继登场,打破了其一统天下的局面,几十年来它占的份额一直在下降,当然绝对用量仍在增加。应该看到,DPF三个组成部分一直在更新发展着,尤其80年代以后借助微电子技术、计算机技术、新材料及先进加工技术的发展,差压转换和流量显示计算部分有突破性进展。DPF无论可靠性,精确度及功能多样化已今非昔比。近年一些创新思路,如一体式、定值节流件等的开发更使它有中兴的感觉。DPF的关键部分--检测件是最难更新换代的部分,现在亦有了新的发展思路,即把流量测量工作者、流体力学与计算机技术工作者三方面人员的特长结合起来可以有效地攻下这个堡垒。可以预计,DPF在流量计中仍会占据重要的位置。选用考虑因素的五个方面为仪表性能、流体特性、安装条件、环境条件和经济因素,现分述如下。
仪表性能方面
(1) 精确度、重复性、线性度、流量范围和范围度
表4.3所示为流量测量节流装置的主要技术参数,标准节流装置规定有严格的使用范围,包括管径、节流件孔径、直径比、雷诺数范围、管壁粗糙度等。在这些使用范围内可以应用标准文件(GB/T 2624)中提供的流出系数和可膨胀性系数,如表4.4所示。应该指出,非标准节流装置的使用范围及其计算式仅作参考,一般来说,它要可靠地应用还是实流校准为好。如果节流装置进行个别实流校准,则其使用范围不受表列参数限制,例如开封仪表厂曾实流校准管径达DN1600的文丘里管流量计用于水流量计量,又如标准规定管径应不小于DN50,现在使用的小管径节流装置则远低于此值,但是它们必须逐台进行个别校准才能投用。由表4.4可见,标准喷嘴的流出系数的不确定度远大于标准孔板,这是由于廓形节流件的精确复制比较困难,如果标准喷嘴进行实流校准,则亦可得高精确度。DPF的精确度在很大程度上决定于现场的使用条件,如果节流装置的制造质量符合要求,则影响因素主要为两方面:流体的物性参数的确定和流体流动特性是否符合标准要求。这两方面我们在流体特性和安装条件中再谈。
整套流量计的精确度还决定于差压变送器和流量显示仪的精确度。目前有一种倾向尽量采用高精度的差压变送器,在流量测量不确定度计算式可以看到,当其他参数的精确度不高时采用高精度差压变送器并不能起多大作用。流量显示仪的作用主要在监视运行参数的稳定性等方面,它的数据转换精度一般是无问题的。因此,要提高测量的精确度应有一个全面估计,这样才能作出技术经济性最佳方案的选择。
DPF的重复性与其他流量计(电磁式,容积式,涡轮,涡街等)相比要低,其原因为输出信号为模拟值易受干扰,尤其差压引压管线这一环节易使信号产生干扰波动,正是由于重复性不高,影响到其精确度的提高。
DPF的输出信号与流量为平方关系,是非线性仪表,这是造成范围度窄的原因,实际上节流装置在广阔的雷诺数范围内其流出系数是稳定的,因此目前采用两种(或多种)量程的差压变送器可以拓宽其范围度(大于10:1以上)。近年已投用的弹性加载变面积变压头节流装置则应用其他工作原理增加其范围度(可达100:1)。
⑵压力损失
DPF压力损失大是它的一个弱点,但是若仔细分析一下这里还有一些选用时可以选择的余地。在DPF各类节流装置中孔板和喷嘴是压损较大的节流件,不过这里亦有差别。在同样的流量及β值时喷嘴的压损只为孔板压损的30%-50%,也就是说喷嘴是较低压损的。各种流量管(文丘里管、道尔管、罗洛斯管、通用文丘里管等)则是低压损的节流装置,它们压损仅为孔板的20%,甚至低达5%-10%。这些节流装置的开发应用是今后一个努力方向。当然,另一类动压头式DPF(均速管流量计)则以低压损著称。
流体特性方面
流体特性分两方面考虑。
⑴流体物性参数的确定
流体物性参数包括密度、粘度、等熵指数、湿度等,这些参数有的直接进入流量方程,有的对流出系数、可膨胀性系数等产生影响。在这些参数中密度是最重要的。对密度的精确度与对差压的精确度有同等数量级的要求,但是密度的精确确定却遇到了困难,它是影响DPF精确度提高的一个重要原因。密度精确度不高的原因是,一般借助密度与组分、压力和温度的函数关系确定它,但是这个关系式的精确度数量往往并不明确,尤其对于混合物普遍缺乏精确的函数式。在这种情况下采用密度计测量是较好的,但是遗憾的是目前密度计品种规格不能满足实际需要,并且价格贵,可靠性不高亦阻碍其广泛使用。
粘度的精确度要求可以低些,它是用来计算雷诺数的,而雷诺数对流出系数的影响并不敏感;粘度的另一作用是确定被测介质是否为牛顿流体,目前流量测量标准都限定被测介质应为牛顿流体。而由于石油化工等工业的发展,愈来愈多非牛顿流体需要测量,因此粘度这个参数今后会引起更大的重视的。
流体物性参数的确定除混合流体外,在高参数(高压、高温、低温等)领域遇到了困难。许多物性参数缺乏高参数下的数据。
(2)流体的腐蚀、磨蚀、结垢、脏污等
这些特性对流量计使用的可靠性造成很大的威胁。DPF是以几何尺寸来确定流量与信号的关系的,在长期使用中保持几何尺寸恒定成为保证测量精确度不变的关键因素。在使用中几何尺寸变化不易觉察,也就是说流量特性已变而不知道,这是很危险的。如何对付这个困难问题仍在探索中,例如采用可换孔板节流装置就是为了便于检查而采取的措施,另外采用并联测量管路可以定期检查清洗等等。流体的上述特性甚至用户都不一定完全掌握的,需要了解流体这些特性以便采取预防措施,在不明确的情况下有时需要进行一些试验。
安装条件方面
要应用标准文件(GB/T 2624或ISO 5167)中的流出系数和可膨胀性系数,必须令投用的节流装置与标准节流装置达到几何相似和动力学相似,现场的安装条件是达到这两个相似的重要因素,因此对节流装置的安装应给予足够的重视。
在安装条件中节流件前后的必要直管段长度往往令选用者为难,在推理式流量计中节流式DPF需要的直管段是比较长的。另外现场阻流件类型远多于标准文件包括的,尤其是所谓组合式阻流件(两种阻流件之间间隔很短)更是难以解决,按照GB/T 2624-93(或ISO 5167-1)遇到此类情况可以采用加装流动调整器解决,但是加装流动调整器所需的直管段亦是很长的(约42D)。在此情况下有以下方案可供选择:采用直管段长度要求较短的节流装置,例如经典文丘里管或其他流量管;用实流校验方法确定现场条件下的流出系数,实流校验可以是在线的或离线的。 前面我们已谈过引压管线是节流式DPF的薄弱环节,近年来一体式节流式DPF的出现较好地解决了此问题,例如我国北方冬天蒸汽流量测量往往为引压管线的保温防冻伤脑筋,一体式DPF彻底解决了它。大多数流量计都有一体式和分离式两种类型,它们的使用各有特点,要根据现场实际情况予以选用,节流式DPF亦不例外。一体式DPF的差压变送器必须适应现场的严酷环境条件,在有些情况,如管道较强振动或强电磁干扰等还是采用分离式为好。
环境条件方面
DPF的差压变送器和流量显示仪两部分有微处理器和电子元器件,它们对环境条件的要求与一般电子仪表是一样的,在本书的其他章节中已有讨论,这里就不再重述了。
经济因素方面
经济因素包括购置费、安装费、运行费、校验费、维护费和备品备件。
(1)购置费
DPF的检测件购置费相对来说较便宜,但考虑其余两部分:差压变送器和流量显示仪整套仪表就不一定便宜了。另外,它还可能需购置一些辅助设备,如冷凝器、集气器、沉降器和隔离器等亦应估计到。
(2)安装费
分离型DPF的安装比较麻烦,主要是差压信号管路及其辅助设备的安装,对于腐蚀脏污介质之类采用隔离系统,其费用还要高些。
(3)运行费
对于大口径管道测量,能耗产生的运行费可能是笔大数目,当然如选用低压损节流装置(经典文丘里管等)亦是降低费用的办法,但是节流装置的购置费又高了,应该仔细核算一下。
(4)校验费
DPF的一个优点是可节省检测件的校验费,不但制造者,使用者亦可免去实流校验的麻烦,这点意义深远。当然DPF其余两部分校验费亦应考虑,它们相对比较方便便宜。
(5)维护费
DPF检测件维护费较少,其余两部分有一定的维护费。
(6)备品备件
DPF差压和显示仪表通用性强,对于大中型企业使用的流量仪表数量较多时可集中选用某些型号规格,以节省备品备件数量。近年推广定值节流件使节流装置摆脱对号入座的局面,检测件的购置就很方便了,可减少备品备件数量。
以上各项费用的综合计算可以比较准确地确定其经济性。
标准节流装置的选择原则
节流式DPF的首选检测件当然是标准节流装置,为了选择最合适的标准节流装置,选型时应从以下几方面考虑:
1)管径、直径比和雷诺数范围的限制条件;
2)测量精确度;
3)允许的压力损失;
4)要求的最短直管段长度;
5)对被测介质侵蚀、磨损和脏污的敏感性;
6)结构的复杂程度和价格;
7)安装的方便性;
8)使用的长期稳定性。
根据上述几方面,标准节流装置的选型原则可归纳为以下几点。
标准节流装置各种类型节流件应用的管径、直径比和雷诺数范围皆有一定的限制,在国家标准GB/T 2624-93(或国际标准ISO 5167-1)中有详细规定,例如孔板可应用于比喷嘴和文丘里喷嘴更大的管径范围,经典文丘里管各种类型之间的管径范围差别较大等等。
标准节流装置各种类型节流件的精确度在同样差压、密度测量精确度下,决定于流出系数与可膨胀性系数的不确定度。各种节流件的流出系数的不确定度差别较大,相比之下,孔板的流出系数的不确定度最小,廓形节流件(喷嘴、文丘里管)较大。廓形节流件较大的原因,是标准中给出的流出系数公式所依据的拟合的数据库质量较差。但是对廓形节流件进行个别校准,也可得到高的精确度。
在同样差压下,经典文丘里管和文丘里喷嘴的压力损失约为孔板与喷嘴的1/4-1/6。而在同样的流量和相同的β值时喷嘴的压力损失只有孔板的30%-50%。
在相同阻流件类型和直径比情况下,经典文丘里管的必要直管段长度比孔板与喷嘴的要小得多。
测量易使节流件沾污、磨损及变形的被测介质时,廓形节流件较孔板要优越得多。
在加工制造及安装等方面,孔板最为简单,喷嘴次之,文丘里喷嘴和经典文丘里管最复杂,其造价亦依次递增。管径愈大,这种差别愈显著。
孔板易取出检查节流件质量(采用可换孔板节流装置),喷嘴和文丘里管则需截断流体,拆下管道才可检查,比较麻烦。
中小口径(DN50-DN100)节流装置,取压口尺寸和取压位置的影响显著,这时采用环室取压有一定优势。
二、差压式流量计常见故障、原因及排除方法
1、指示零或移动很小
其原因为:
(1)平衡阀未全部关闭或泄漏;
(2)节流装置根部高低压阀未打开;
(3)节流装置至差压计间阀门、管路堵塞;
(4)蒸气导压管未完全冷凝;
(5)节流装置和工艺管道间衬垫不严密;
(6)差压计内部故障。
其对应处理方法为:
(1)关闭平衡阀,修理或换新;
(2)打开;
(3)冲洗管路,修复或换阀;
(4)待完全冷凝后开表;
(5)拧紧螺栓或换垫;
(6)检查、修复。
2、指示在零下
其原因为:
(1)高低压管路反接;
(2)信号线路反接;
(3)高压侧管路严重泄漏或破裂。
其对应处理方法为:
(1)检查并正确连接好;
(2)检查并正确连接好;
(3)换件或换管道。
3、指示偏低
其原因为:
(1)高压侧管路不严密;
(2)平衡阀不严或未关紧;
(3)高压侧管路中空气未排净;
(4)差压计或二次仪表零位失调或变位;
(5)节流装置和差压计不配套,不符合设计规定。
其对应处理方法为:
(1)检查、排除泄漏;
(2)检查、关闭或修理;
(3)排净空气;
(4检查、调整;
(5)按设计规定更换配套的差压计。
4、指示偏高
其原因为:
(1)低压侧管路不严密;
(2)低压侧管路积存空气;
(3)蒸气等的压力低于设计值;
(4)差压计零位漂移;
(5)节流装置和差压计不配套,不符合设计规定。
其对应处理方法为:
(1)检查、排除泄漏;
(2)排净空气;
(3)按实际密度补正;
(4)检查、调整;
(5)按规定更换配套差压计。
5、指示超出标尺上限
其原因为:
(1)实际流量超过设计值;
(2)低压侧管路严重泄漏;
(3)信号线路有断线。
其对应处理方法为:
(1)换用合适范围的差压计;
(2)排除泄漏;
(3)检查、修复。
6、流量变化时指示变化迟钝
其原因为:
(1)连接管路及阀门有堵塞;
(2)差压计内部有故障。
其对应处理方法为:
(1)冲洗管路、疏通阀门;
(2)检查排除。
7、指示波动大
其原因为:
(1)流量参数本身波动太大;
(2)测压元件对参数波动较敏感。
其对应处理方法为:
(1)高低压阀适当关小;
(2)适当调整阻尼作用。
8、指示不动
其原因为:
(1)防冻设施失效,差压计及导压管内液压冻住;
(2)高低压阀未打开。
其对应处理方法为:
(1)加强防冻设施的效果;
(2)打开高低压阀。
本文来源于综合公开信息。
版权声明∶转载流程工业网内容,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱∶process@vogel.com.cn,电话:16601379371(同微信)
差压式流量计作为经典与最古老的流量计,应用范围最为广泛。不过随着电子式流量计如(电磁、涡街等)流量计的兴起,我们有些新的行业朋友,还真不一定熟悉这种流量计,今天这一期,给大家好好讲解这个差压式流量计。
2022-03-20 本网编辑
流量计指示被测流量和(或)在选定的时间间隔内流体总量的仪表,也是测量液体、气体流量必不可少的仪表,大家平时想必也都见过许多不同类型的流量计。正确的安装方式对流量计来说十分重要。下面通过本文跟随流程君来了解一下八类常用流量计的安装要点。
2021-08-12 本网编辑
电磁流量计是根据法拉第电磁感应定律进行流量测量的流量计。电磁流量计的优点是压损极小,可测流量范围大。最大流量与最小流量的比值一般为20:1以上,适用的工业管径范围宽,最大可达3m,输出信号和被测流量成线性,精确度较高,可测量电导率≥5μs/cm的酸、碱、盐溶液、水、污水、腐蚀性液体以及泥浆、矿浆、纸浆等的流体流量。但它不能测量气体、蒸汽以及纯净水的流量。
2022-05-06 本网编辑
2024-12-17
2024-12-24
2025-01-08
2025-01-08
2025-01-07
2024-12-20
2025-01-10
工业是节能降碳的重点领域,也是实现“3060”碳达峰碳中和目标的关键。党的二十大报告明确提出,积极稳妥推进碳达峰碳中和,推进降碳、减污、扩绿、增长,完善能源消耗总量和强度调控,重点控制化石能源消费,逐步转向碳排放总量和强度“双控”制度。为了回顾 2023 年工业企业在节能降碳、绿色可持续发展方面的成就,了解当下的创新技术和应用,《流程工业》编辑部在 2024 年第一期特别策划了“工业碳中和”专题,邀请了一批国内外优秀的工业企业分享观点和产业实践,为广大的流程工业企业提供绿色可持续发展的启迪和借鉴。
作者:本刊编辑部
评论
加载更多