1、炼化行业面临的主要挑战
1.1 炼油企业减碳压力
2020年9月,习近平主席在第七十五届联合国大会上提出,中国二氧化碳排放力争于2030年前达峰,争取2060年前实现碳中和。同年12月12日,习近平主席在“领导人气候峰会”上进一步宣布,到2030年,单位国内生产总值二氧化碳排放将比2005年下降65%以上,这意味着碳达峰峰值与当前相比不会有显著增加。目前,中国是全球碳排放量最大的国家,约占世界总碳排放量的30%,单位GDP能耗约是发达国家的2~3倍,从碳达峰到碳中和仅有30年的过渡期,远少于发达国家50~70年的时间跨度,在保持经济持续稳健发展的前提下实现碳中和目标,时间紧、任务重。中国每年在石油加工环节中排放的二氧化碳总量约5×108 t,碳减排对于石化行业来说是一项现实且紧迫的任务。石化行业体量大、流程长、发展惯性大、路径依赖强,在满足人民生活需要前提下实现碳达峰、碳中和将面临严峻挑战。
1.2 市场导向转变带来的挑战
1.2.1 炼油加工能力过剩从2017年开始,中国炼油能力重回增长轨道。由于民营大型炼化项目相继建成投产,中国炼油能力继续较快增长,2021 年末已赶上美国,达到9.1×108t/a,“十四五”期间炼油能力仍将延续较快增长态势。虽然近两年国内炼油厂开工率有所上升,但仍不足78%,低于全球平均水平。2021年中国炼油能力实际过剩至少2×108t,目前还有多个千万吨级炼油项目在规划建设中,未来国内炼油能力过剩的形势将更加严峻。
1.2.2 炼油产品需求发生变化
炼油企业过去一直以生产成品油为主。从市场表现来看,柴油需求已呈下降趋势,汽油需求接近达峰,航空煤油(航煤)需求仍有一定增长空间但受疫情冲击明显,国内成品油表观消费量近年来基本维持在3×108t/a的水平。新能源汽车行业的蓬勃发展,将促使成品油整体消费量加速见顶并开启下降通道,而同期随着经济发展和人口增长,石化产品呈现出巨大的增长潜力,化工原料将在石油消费占比中逐步提高,推动炼油向化工产品生产转型。虽然就全生命周期而言,石油炼制从生产成品油向生产化工产品转型是碳排放减少的过程,但由于生产化工产品能耗高于生产成品油,在生产端其碳排放呈上升趋势。
1.2.3 市场波动的挑战
原油价格的大幅度波动也是炼化行业面临的挑战。为保障原油供应的稳定性,炼化企业需要保持一定的原油库存,同时利用期货及衍生品来对冲风险。但是化工产品价格与成品油定价机制不同,更多的受行业景气周期影响,化工产品价格波动带来的不利影响需要炼化企业自我消化,对于炼油企业的化工转型是极大的挑战。流程工业的特点决定了炼化企业的加工流程相对固定,但较为灵活的加工方案不仅可以为企业在不同市场环境中创造更大价值,而且可以在产品市场供需及价格出现大幅度波动时,帮助企业掌握更大主动权。
1.2.4 产品质量不断提升
党的十九大报告明确指出:“中国特色社会主义进入新时代,我国社会主要矛盾已经转化为人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾”。产品的质量和对环境的保护对于建设社会主义生态文明的重要性不言而喻。中国自2000年推行无铅汽油以来,炼油行业通过不断提升汽、柴油质量标准持续快速升级产品质量,降低污染物含量,目前国内执行的国Ⅵ A标准已经达到世界领先水平,并计划从2023年1月1日起执行国Ⅵ B标准,届时车用汽油及柴油的质量标准将更加严苛。从2020年1月起,国际海事组织(IMO)执行新的硫排放限制法令,将全球船舶使用燃料油的硫质量分数上限由3.5%降至0.5%,并在排放控制区域施行更严格的监管,要求船用燃料油(船燃)的硫质量分数不应超过0.1%。作为IMO成员国,中国政府从政策保障、低硫船用燃料油供应等方面积极响应IMO的限硫令新政。总之,随着国内环保要求日益严格以及供给侧改革不断深化,炼化产品质量持续升级将是大势所趋。同时,《水污染防治行动计划》《大气污染防治行动计划》《土壤污染防治行动计划》的颁布执行,也将很大程度影响炼化企业的加工成本。
2、市场与“双碳”目标双导向下炼油行业发展方案
中国炼油行业面临低端产能过剩、高端产能不足的发展困境,整体“大而不精”问题愈发突出。随着炼油行业市场化进程叠加“双碳”目标的持续推进,中国炼油结构将迎来深度调整。
碳减排则需要充分考虑技术经济性统筹实施,从近期到中期,可选择的技术路线包括能效提升、原油调和优化、氢气系统优化、以分离技术为核心的组分炼油、包含废塑料化学循环在内的废弃资源循环利用、短流程化学品生产技术等;从中期到远期,则更加需要低碳原料和负碳技术,如生物质原料、绿电、绿氢、二氧化碳利用技术等。
2.1 质量持续提升下的关键炼油技术
国Ⅵ车用汽油标准发布后,烷基化汽油在汽油调和组分中的比例将大幅提高,汽油终馏点仍会进一步下降。更低能耗的烷基化技术、增产烷基化原料技术、低成本降苯技术、C9+芳烃轻质化等将是汽油升级关键技术。
2.2 环保目标持续提升下的关键技术
石油炼制企业生产过程的污染源主要分为废气污染、废液污染以及固体废物污染。针对不同污染源,需要开发不同的环保处理技术,例如针对固废的固废共气化功能岛、污泥减量化技术、场地污染识别、迁移转化模拟以及新型淋洗-生物耦合土壤修复技术,处理废液污染的新技术包括水冷器漏油溯源技术、循环水低磷缓蚀阻垢技术、难生化废水高效预处理技术等,目前这些技术均已初显成效。
2.3 炼油结果转型
2.3.1 生产基本有机化工原料
对于不具备炼化一体化条件的企业,可行的转型方案是,建立以催化裂解技术为核心的技术路线,多生产轻质烯烃和芳烃。催化裂解家族技术包括DCC Plus、DCC Pro(RTC)等,是一类以蜡油和加氢渣油为原料的重油催化裂解多产轻质烯烃的技术。近年来催化裂解家族技术进一步拓展,可以将成品油原料(石脑油、航煤、柴油等馏分)作为催化裂解原料来生产轻质烯烃,产品中丙烯、BTX(苯、甲苯、二甲苯)含量高,乙烯、丙烯的比例可以调节。比较有代表性的国产技术有中国石化的直馏石脑油催化裂解(SNCC)技术,相应的国外技术也已经在国内企业开展了工业应用的尝试。对于原料质量相对较好的炼油厂,可以选用原油直接催化裂解工艺技术。与原油直接蒸汽裂解相比,原油催化裂解对原油质量要求更为宽松,适应性强,更适合生产丙烯。其核心是基于烃分子的裂解反应特性和催化裂化反-再系统的工艺特性,采用分区耦合转化技术,实现裂解性能差异显著的分子在同一反应系统中的高效转化,可大幅提高化学品选择性,降低加工过程碳排放。
2.3.2 进一步提升产品价值
2.4 持续降本降碳
2.4.1 分子炼油(组分炼油)技术
从分子水平加深对石油加工过程的认识,依托原油数据库和工艺技术模型进行分子炼油(组分炼油)可大大提升反应过程选择性。通过为企业提供原油选择与产品经济性分析模型,建立以分离为核心的总流程加工路线,可大幅度提升单程转化效率和目标产物收率,减少无效循环,降低生产成本。比如应用分子炼油可从石脑油分离出正构烷烃用于蒸汽裂解、C5/C6 异构烷烃用于汽油调和、环烷烃/芳烃用于重整。可以看出,实现分子炼油(组分炼油)的关键在于高效的分离平台建设,如膜分离、吸附分离、变压吸附分离、电化学吸附分离等手段。
2.4.2 基于碳足迹研究的总流程优化
已经开展的研究表明,炼油厂二氧化碳排放中直接排放占90%~95%,其中燃料燃烧排放又占直接排放的60%左右,是炼油厂直接排放中最大的排放源。来自催化裂化装置的催化剂烧焦、制氢装置等工艺过程的二氧化碳排放占直接排放的40%左右。基于对全国50余家炼油厂的碳核算计算结果分析,炼油厂的碳排放强度对技术路线敏感度远高于对规模的敏感度,因此,优良的低碳流程基因是炼油厂最有效的碳减排手段。在炼油厂生产运营过程中,利用全厂总流程技术开展全厂物流与碳流的协同优化,可为“双碳”约束下的炼油厂发展提供思路。
2.4.3 炼油厂能效提升降碳
炼油厂因用能产生的碳排放占全厂碳排放的60%以上,因此开展用能效率的提升是降低炼油厂碳排放的关键环节。能效提升包括换热网络优化、蒸汽动力系统优化、低温热高效利用等方面。以换热网络优化为例,采用夹点分析与数学规划相结合的算法,进行换热网络的严格模拟,结合装置用能特点和限制条件,提出节能操作优化与改造优化建议,可实现能量介质的优化分配和综合利用。对于千万吨级常减压装置,通过换热网络集成优化可减少碳排放(2~5)×104t/a,能效提升1~3kg标油/t,经济效益增加(1.5~3)×107 CNY/a。
2.4.4 氢气系统优化降碳
近年来,中国炼油厂加工原油重质化、劣质化趋势加剧,油品清洁指标日益严格,加氢工艺在石化企业中得以广泛应用,目前加氢所用的氢气基本全是碳基灰氢,其生产过程能耗与碳排放量巨大。因此,对氢气系统进行集成优化以提高氢气利用率,是石化企业减碳、增效的重要途径。在“双碳”背景下,炼油厂用氢理念应从氢气平衡逐步过渡到氢气管理,从氢气回收利用、加氢装置节氢管理、氢气网络整体优化三个关键环节入手开展氢气网络系统集成优化,实现氢气资源的梯级高效利用,提高氢气利用效率,降低氢耗、系统能耗和二氧化碳排放。以千万吨级炼油厂为例,开展氢气资源高效优化后,可实现碳减排2×104t/a以上,经济效益增加5×107 CNY/a以上。
2.4.5 废塑料化学循环
炼油的传统认知是以原油为原料,面对原油资源的高度不确定性以及白色污染日趋严重的问题,低碳发展形势下废弃资源的循环利用将发挥重要作用。废塑料,尤其是聚乙烯(PE)、聚丙烯(PP)为主的聚烯烃树脂为饱和链烷烃,H/C 比高,硫含量低,是优质的石油替代品。中国石化开发了废塑料热解技术及配套多路径后加工技术,具有较强的碳减排竞争力。与原油生产路线相比,废塑料化学循环生产塑料单体时,产品碳足迹降低40%以上,以中国三分之二的废塑料实施化学循环计算,可实现碳减排4.7×107t/a。
2.4.6 生物液体燃料
基于生物质油品中的碳来自于大气中二氧化碳的光合作用,因此植物油脂本身具有负碳的特点,所以采用植物油脂尤其是废弃植物油脂生产生物液体燃料时,全生命周期碳排放比石油基产品低80%以上,生物液体燃料的投用将极大助力碳减排。
基于对产品转型的实际需求,未来炼油厂的构建首先要采用“油转化”“油产化”和“油转特”的思路构建化工型炼油厂。石油进入炼油厂后生产以三烯三苯为主要产品的基本有机化工原料,同时可以副产少量特种油品;再根据原料产业链的规划将基本有机化工原料生产成有机化工产品;部分化工产品再进一步加工生产材料、高端材料或化学品。
(1)炼化行业面临的挑战主要来自因市场导向转变造成的炼油加工能力过剩、产品需求变化、原油价格波动及产品质量要求不断提升等方面以及“双碳”目标驱动下的减碳压力。
作者介绍:李明丰,博士,教授级高级工程师,从事汽柴油质量升级、废塑料化学回收、生物质油加工、氢能生产利用、石化行业碳核算研究。
本文来源于综合公开信息。
版权声明∶转载流程工业网内容,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱∶process@vogel.com.cn,电话:16601379371(同微信)
构建智能工厂的前提是数字化工厂的建设,而工程项目数字化交付是数字化工厂建设的基础,在工程项目中开展数字化交付会对工程公司现有的项目执行模式带来一定的改变。介绍了数字化交付的现状、模式和核心要求,结合某工程公司在工程建设过程中实施数字化交付的应用研究,深入分析了工程项目数字化交付的必要性、交付原则、交付深度等内容,同时对工程公司如何高效执行项目数字化交付进行实践应用研究。
2021-09-16 本网编辑
自2022年6月7日空压制氮35kV变配电所一次送电成功后,内蒙古东景生物环保科技有限公司年产20万吨BDO项目按下“快进键”,全力冲刺“6.30”中交目标。
2022-06-28 本网编辑
2024-10-24
2024-10-23
2024-10-28
2024-10-24
2024-11-15
2024-10-23
2024-11-05
工业是节能降碳的重点领域,也是实现“3060”碳达峰碳中和目标的关键。党的二十大报告明确提出,积极稳妥推进碳达峰碳中和,推进降碳、减污、扩绿、增长,完善能源消耗总量和强度调控,重点控制化石能源消费,逐步转向碳排放总量和强度“双控”制度。为了回顾 2023 年工业企业在节能降碳、绿色可持续发展方面的成就,了解当下的创新技术和应用,《流程工业》编辑部在 2024 年第一期特别策划了“工业碳中和”专题,邀请了一批国内外优秀的工业企业分享观点和产业实践,为广大的流程工业企业提供绿色可持续发展的启迪和借鉴。
作者:本刊编辑部
评论
加载更多