萃取精馏Extractive Distillation
01、定义
向原料液中加入第三组分(称为萃取剂或溶剂),以改变原有组分间的相对挥发度而得到分离。与恒沸精馏不同的是萃取剂不与原料液中任何组分形成恒沸物。
02、萃取精馏的操作特点
为增大被分离组分的相对挥发度,应使各板液相均保持足够的添加剂浓度,当原料和萃取溶剂以一定比例加入塔内时,必存在某一个最合适的回流比。当不含添加剂的回流过大,非但不能提高馏出液组成,反而会降低塔内添加剂的浓度而使分离变得更为困难。同样,当塔顶回流温度过低或添加剂加入温度较低,都会引起塔内蒸汽部分冷凝而冲淡各板的添加剂浓度。
03、萃取精馏装置的典型流程
主要设备是萃取精馏塔。由于溶剂的沸点高于原溶液各组分的沸点,所以它总是从塔釜排出的。为了在塔的绝大部分塔板上均能维持较高的溶剂浓度,溶剂加入口一定要在原料进入口以上。但一般情况下,它又不能从塔顶引入,因为溶剂入口以上必须还有若干块塔板,组成溶剂回收段,以便使馏出物从塔顶引出以前能将其中的溶剂浓度降到可忽略的程度。溶剂与重组分一起自萃取精馏塔底部引出后,送入溶剂回收装置。一般用蒸馏塔将重组分自溶剂中蒸出,并送回萃取精馏塔循环使用。一般,整个流程中溶剂的损失是不大的,只需添加少量新鲜溶剂补偿即可。
例如,从烃类裂解气的碳四馏分分离丁二烯时,由于碳四馏分的各组分间沸点相近及相对挥发度相近的特点,而且丁二烯与正丁烷还能形成共沸物,采用普通的精馏方法是难以将丁二烯与其它组分加以分离的。如果采用萃取精馏的方法,在碳四馏分中加入乙腈做萃取剂,则可增大组分间的相对挥发度,使得用精馏的方法能将沸点相近的丁二烯、丁烷和丁烯分离。碳四馏分经过脱碳三、和碳五馏分后,进入丁二烯萃取剂精馏塔,在萃取剂乙腈的存在下,使丁二烯(包括少量的炔烯)、乙腈与其它组分分开,从塔釜采出并进入解析塔,在此塔中,丁二烯、炔烯从乙腈中解析出来,萃取剂循环使用。丁二烯、炔烯进入炔烯萃取精馏塔,丁二烯从塔顶逸出,经水洗,得到成品丁二烯。
04、萃取精馏的注意事项
由于加入的萃取剂是大量的(一般要求xs>0.6),因此塔内下降液量远大于上升蒸汽量,造成汽液接触不佳,设计时要考虑塔板及流体动力情况。
05、萃取剂的选择
萃取精馏的添加剂(又称萃取剂)的选择原则是:①选择性高,即加入少量添加剂就可大幅度增加组分间的相对挥发度;②挥发度小,即具有比料液组分高得多的沸点;③与原料液有足够的互溶度,在塔板上不出现液体分相现象;④来源充足,价格便宜,水和某些极性有机化合物是最常用的添加剂。
06、适用范围
萃取精馏主要用于那些加入添加剂后,因相对挥发度增大所节省的费用,足以补偿添加剂本身及其回收操作所需费用的场合。萃取精馏最初用于丁烷与丁烯以及丁烯与丁二烯等混合物的分离。目前,萃取精馏比恒沸精馏更广泛地用于醛、酮、有机酸及其他烃类氧化物等的分离。
07、萃取精馏与恒沸精馏的比较
①萃取剂比挟带剂易于选择。
③萃取精馏过程中,萃取剂加入量的变动范围较大,在恒沸精馏中适宜的挟带剂量多为一定。所以萃取精馏操作较灵活,易控制。
⑤恒沸精馏操作温度较萃取精馏低,所以恒沸精馏适用于分离热敏性溶液。
08、萃取精馏在实际中的应用
化学及石油化工等领域中,萃取精馏主要用于两个方面:一是沸点相近的烃的分离,如最典型的丁烯与丁二烯的分离,两者沸点相差只有2℃,相对挥发度为1.03;二是共沸物的分离,如甲醇-丙酮、乙醇-乙酸乙酯以及乙醇和醋酸等有机物水溶液。
萃取精馏的优点是增加了被分离组分之间的相对挥发度,使难分离物系的分离能够进行;缺点是加入的萃取剂量较大,增大了分离过程的能耗。因此,对萃取精馏进行改进,对强化分离过程具有重要意义。
芳烃分离过程
在芳烃回收方面,液液萃取技术已经有很长的使用历史,液液萃取技术基于组分的极性,来影响组分间的分离,而对于沸点的影响较小。因为受到溶剂选择的限制,对于较宽沸点混合料的分离,采用萃取精馏很难实现,早先它只能对窄沸点物料使用,如采用N-甲基吡咯烷酮或N-甲酰吗啉作为溶剂进行的C6和C7物料的分离过程。
催化裂化汽油的脱硫
催化裂化(FCC)汽油中所含的硫化物中50%~60%(质量分数)是噻吩及其烷基衍生物,其余为硫醇及其他硫化物。在催化裂化条件下噻吩化合物稳定性较强,国外公司普遍采用加氢脱硫方法,为了进一步降低汽油中的硫含量,目前采取的措施是提高加氢处理能力。加氢有利于进行燃料中脱硫处理,但是它存在运行费用高、深度加氢将降低汽油辛烷值等缺点。
裂解汽油回收和苯乙烯提纯
裂解汽油副产品中含有丰富的石油化工化合物,如果对其进行提纯并加以充分利用,将产生相当大的经济效益。由于这些组分沸点接近,形成了络合物,采用传统分离方法很难将其分离。而萃取精馏技术的发展为其提供了可能,萃取精馏技术通常用于从裂解汽油的轻组分中提纯丁二烯和异戊二烯,实际上也可以用于从C8料中有效分离苯乙烯。
反应精馏 Reactive Distillation
反应精馏(Reactive Distillation)工艺的出现,彻底改变了长期以来人们对反应和分离过程的传统认识,它使化学反应过程和精馏分离的物理过程结合在一起,是伴有化学反应的新型特殊精馏过程。
01、关于反应精馏
在进行反应的同时用精馏方法分离出产品的过程。可以是为提高分离效率而将反应与精馏相结合的一种分离操作;也可以是为了提高反应转化率而借助于精馏分离手段的一种反应过程。
02、反应精馏的原理
03、反应精馏技术的应用
应用很广泛,例如酯化、酯交换、皂化、胺化、水解、异构化、烃化、卤化、脱水、乙酰化和硝化等反应,具体反应举例见下表:
1、烷基化
2、叠合过程
采用反应精馏技术可使烯烃分子有选择的叠合,因为精密的温度控制和反应段的宽分布将减少非理想产品的二聚物、三聚物或高聚物的生成,丁烯叠合的反应精馏工艺目前已获工业许可。
3、烯烃选择性加氢
已经证明,反应精馏可使不需要的烯烃杂质选择加氢,使其失去化学活性或不有利于精馏分离去除。目前,可应用反应精馏技术的有:丁二烯、戊二烯及己二烯选择性加氢。
4、酯转移
某些化学反应所使用的酸具有腐蚀性。为了避免酸性腐蚀,可以以酯的形式引入酸。例如,甲酸甲酯分解会生成甲酸和甲醇,而甲酸一旦形成就被平衡反应消耗掉,这样避免了甲酸的腐蚀。
5、氧化脱氢
6、醚化反应
甲基叔丁基醚(MTBE)是应用RD技术第一个取得工业成功的产品,该过程与传统流程相比具有无反应器的外部循环和冷却;通过预反应有效脱除催化剂毒物,延长催化剂的使用寿命;充分利用反应放出的热量,反应物转化率高以及产品纯度高等特点。
7、酯化和水解
乙酸甲酯(MeOAc)合成与水解的催化精馏工艺是近年来国内外研究和开发的热门话题,由于乙酸和甲醇的酯化受化学平衡的限制,且物系中有多个共沸物,故传统流程十分复杂,需多个反应器和精馏塔。
8、其它反应
其它有可能利用反应精馏方法的领域包括:氧化,电化学,合成气反应,从醇和氨选择性地生产胺,羧基化反应。除此之外,通过引入第三组分(即反应夹带剂),反应精馏技术就能用于分离沸点极为接近的混合物。如:分离C1芳烃,氯苯胺。甲基吡啶等同分异构体的混合物。
反应A←→C,若反应物比产物易挥发αA >αC,进料位置在塔上部或塔顶。
反应A+B←→C+D,反应物的挥发度介于两产物之间,αC>αA>αB >αD。
工业上一个典型的催化精馏过程,甲醇和异丁烯在强酸性离子交换树脂上催化反应生成甲基叔丁基醚(简写为MTBE):
注:催化剂填充段应放在反应物含量最大的区域
影响塔压变化的因素是什么?
①塔顶冷凝器为分凝器时,塔压一般是靠气相采出量来调节的。在其它条件不变的情况下,气相采出量增大,塔压下降;气相采出量减小,塔压上升。
②塔顶冷凝器为全凝器时,塔压多是靠冷剂量的大小来调节,即相当于调节回流液温度。在其它条件不变的前提下,加大冷剂量,则回流液的温度降低,塔压降低;若减少冷剂量,回流液温度上升,塔压上升。
对于减压精馏塔的压力控制,主要有以下两种方法。
当被分离的物料允许与空气接触时,在此控制方案中,蒸汽喷射泵在最大的能力下工作,调节阀装在通大气的管线上,用调节阀开度的大小,调节系统的尾气抽气量,从而达到调节塔的真空度的目的。
对于常压塔的压力控制,主要有以下三种方法。
②对于塔顶压力的稳定性要求较高或被分离的物料不能和空气接触时,塔顶压力的控制可采用加压塔加压的控制方法。
精馏操作中怎样调节釜温?
当釜温变化时,通常采用改变再沸器的加热蒸汽量,将釜温调节至正常。当釜温低于规定值时,应加大蒸汽用量,以提高釜液的气化量,使釜液中重组分的含量相对增加,泡点提高,釜温提高。当釜温高于规定值时,应减少蒸汽用量,以减少釜液的气化量,使釜液中轻组分的含量相对增加,泡点降低,釜温降低。
釜温波动的原因比较多。当塔压突然升高时,釜温会随之升高,而后又下降。这种釜温的升高是因为压力升高引起了釜液泡点的升高所致。因而,塔内的上升蒸气量不但不会增加,反而还会因为压力的升高而减少;这样,塔釜混合液中轻组分的蒸出就不完全,将导致釜液泡点的下降,因而使釜温又随之下降。反之,当塔压突然下降时,塔内的上升蒸气量会因塔压的降低而增加,造成塔釜液面的迅速降低,这样重组分可能被带至塔顶。随着釜液中组分的变重,釜液的泡点升高,釜温也会随之升高。由此看来,塔压是引起釜温变化的重要因素。因此,操作中只有首先把塔压控制在要求的指标上,才能确切地知道釜温是否符合工艺要求,否则会导致错误的操作。
釜温也会随着进料中轻组分浓度的增加而降低,重组分浓度的增加而升高。另外,釜中有水、再沸器中物料聚合堵塞了部分列管、加热蒸汽压力的波动、调节阀的失灵、物料的平衡采出受到破坏等,都能引起釜温的波动。釜温波动时,要分析引起波动的原因,加以消除。例如,塔顶采出量过小,使轻组分压入塔釜而引起釜温下降。此时若不增加塔顶采出,单纯地加大塔釜加热蒸汽的用量,不但对釜温没有作用,严重时还会造成液泛。又如,再沸器的列管因物料聚合而堵塞,致使釜温下降,此时,应停车对设备进行检修。
在精馏操作中怎样调节回流比?
例如,塔顶产品中重组分含量增加,质量下降,要适当增大回流比。塔的负荷(进料量)过低,为了保证塔内一定的上升蒸气速度,也要适当增大回流比。对于大型的生产装置,当不同类型的塔板结构与上升蒸气速度的要求及仪表的设计工作范围与实际生产量的大小产生矛盾时,可以相应地适当改变回流比。又如浮阀塔板,如果处理能力只有设计能力的50-60%时,为了使浮阀在适宜范围内工作,为了让仪表的测量范围在适宜的工作范围内,应采取加大回流比来保证生产的稳定,这对大型生产装置维持必要的稳定生产是极为重要的。
①减少塔顶采出量以增大回流比。
③有回流液中间贮槽的强制回流,可暂时加大回流量,以提高回流比,但不得将回流贮槽抽空。
塔压差是衡量塔内气体负荷大小的主要因素,也是判断精馏操作的进料、出料是否均衡的重要标志之一。在进料、出料保持平衡,回流比不变的情况下,塔压差基本上是不变的。当正常的物料平衡遭到破坏,或塔内温度、压力改变时,都会造成塔内上升蒸气流速的改变,以及塔板液封高度的改变,从而引起塔压差的变化。
①在进料量不变的情况下,用塔顶的液相采出量来调节塔压差。产品采出多,则塔内上升蒸气的流速减小,塔压差下降;采出量减少,塔内上升蒸气的流速增大,塔压差上升。
③在工艺指标许可的范围内,通过釜温的变化来调节塔压差。提高釜温,塔压差上升;降低釜温,塔压差下降。
在精馏操作中怎样调节塔顶温度?
塔顶温度的调节方法,主要为两种:一种是固定回流量,调节回流温度;一种是固定回流温度,调节回流量。由于生产装置日趋大型化,考虑到生产的稳定性,调节回流量的方法得到了广泛采用。具体的调节方法如下:
②当塔顶使用的冷剂在传热过程中有相变化时,可用冷剂的蒸发压力与顶温串级调节来控制顶温。蒸发压力降低,对应的蒸发温度也降低,引起顶温降低。这种方法在塔顶冷凝器为分凝器时可以改变回流量;在塔顶冷凝器有过冷作用时,又可以用来改变回流温度。
④用塔顶冷凝器的换热面积调节顶温。提高冷剂液面,换热面积增大,顶温降低。这种方法既可改变回流量,又可改变回流温度。
在精馏操作中,有时釜温升不起来的原因是什么?
在开车的升温过程中,釜温升不起来的原因可能是:
①加热系统的疏水器(或叫排水阻气阀)失灵;
③再沸器内的蒸汽冷凝液没有排空,蒸汽加不进去;
⑤设备结构不合理,使釜液循环受阻;
正常操作中,引起釜温提不起来的原因可能是:
②再沸器列管内的物料结焦或列管被堵塞;
④塔釜组分过重,现有的热剂不能将釜液加热到泡点,致使釜液循环不畅通;
⑥釜液面太低或太高。
本文来源于综合信息。
版权声明:转载流程工业网内容,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:process.jgvogel.cn。
萃取精馏(Extractive Distillation)是化工工业中最重要的分离方法之一,作为可选择性最高的特殊精馏工艺之一,很多人对它的认识并不深刻。
2022-02-17 本网编辑
2024-12-17
2024-12-24
2025-01-08
2025-01-08
2025-01-07
2024-12-20
2025-01-10
工业是节能降碳的重点领域,也是实现“3060”碳达峰碳中和目标的关键。党的二十大报告明确提出,积极稳妥推进碳达峰碳中和,推进降碳、减污、扩绿、增长,完善能源消耗总量和强度调控,重点控制化石能源消费,逐步转向碳排放总量和强度“双控”制度。为了回顾 2023 年工业企业在节能降碳、绿色可持续发展方面的成就,了解当下的创新技术和应用,《流程工业》编辑部在 2024 年第一期特别策划了“工业碳中和”专题,邀请了一批国内外优秀的工业企业分享观点和产业实践,为广大的流程工业企业提供绿色可持续发展的启迪和借鉴。
作者:本刊编辑部
评论
加载更多